

CDIO – Engineering Education for the 21st Century

Professor Johan Malmqvist

Chalmers University of Technology Gothenburg, Sweden

September 1, 2018

OUTLINE

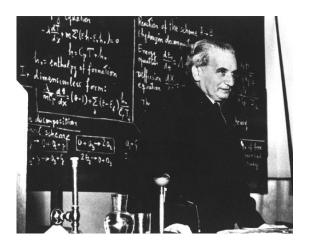
- What is CDIO?
- Case: CDIO in Chalmers' mechanical engineering programme
- CDIO development directions

 An <u>idea</u> of what engineering students should learn and how: To become "Engineers who can engineer"

 A <u>methodology</u> for engineering education reform: The CDIO Syllabus and the 12 CDIO Standards

 A <u>community</u>: The CDIO Initiative with 140+ universities as members

<u>WHAT</u> SHOULD ENGINEERING STUDENTS LEARN?


HOW SHOULD THEY LEARN IT?

THE PROFESSIONAL ROLE OF ENGINEERS

"Scientists investigate that which already is. Engineers <u>create</u> that which has never been. - Theodore von Karmann

"What you need to invent, is an imagination and a pile of junk" - Thomas Edison

"Engineers <u>Conceive</u>, <u>Design</u>, <u>Implement</u> and <u>Operate</u> complex products and systems in a modern team-based engineering environment"

Lifecycle of a product, process, project, system, software, material

- **Conceive**: customer needs, technology, enterprise strategy, regulations; and conceptual, technical, and business plans
- Design: plans, drawings, and algorithms that describe what will be implemented
- Implement: transformation of the design into the product, process, or system, including manufacturing, coding, testing and validation
- Operate: the implemented product or process delivering the intended value, including maintaining, evolving and retiring the system

Duke University

THE CDIO SYLLABUS 2.0

- A generalized list of competences that an engineer should possess
- Program specific (1) and general (2-4)
- Created and validated by alumni, faculty and students
- A "complete" reference model

Disciplinary Knowledge & Reasoning:

- 1.1 Knowledge of underlying mathematics and sciences
- 1.2 Core engineering fundamental knowledge
- 1.3 Advanced engineering fundamental knowledge, methods and tools

2 Personal and Professional Skills

- 2.1 Analytical reasoning and problem solving
- 2.2 Experimentation, investigation and knowledge discovery
- 2.3 System thinking
- 2.4 Attitudes, thought and learning
- 2.5 Ethics, equity and other responsibilities

3 Interpersonal Skills

- 3.1 Teamwork
- 3.2 Communications
- 3.3 Communication in a foreign language

4 CDIO of Complex Systems

- 4.1 External, societal and environmental context
- 4.2 Enterprise and business context
- 4.3 Conceiving, systems engineering and management
- 4.4 Designing
- 4.5 Implementing
- 4.6 Operating
- 4.7 Leadership
- 4.8 Entrepreneurship

CDIO Syllabus contains 2-3 more layers of detail

An education that stresses the fundamentals, set in the context of Conceiving – Designing – Implementing – Operating systems and products:

- Clear, detailed programme learning outcomes that express a holistic view of engineering
- A curriculum organised around mutually supporting courses, with CDIO activities highly interwoven
- Rich with student design-build projects
- Integrating learning of professional skills such as teamwork and communication
- Featuring active and experiential learning
- Taught by teachers with scientific, engineering and pedagogic competence
- Constantly improved through quality assurance process with higher aims than accreditation

Retask current assets and resources in:

- Curriculum
- Teaching and learning methods
- Design-implement experiences and engineering workspaces
- Learning assessment methods
- Faculty competence
- Program evaluation

A systematic approach is needed to address these issues!

THE CDIO EDUCATION DEVELOPMENT METHODOLOGY

CDIO DEVELOPMENT METHODOLOGY

1

2

3

4

2.5

2

1,5

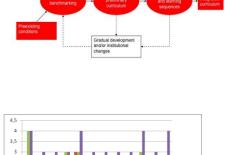
1

and tools

2.3 System thinking 2.4 Attitudes, thought and learning 2.5 Ethics, equity and other responsibilities

4.4 Designing

4.6 Operating


4.7 Leadership

4.5 Implementing

4.8 Entrepreneurship

Interpersonal Skills 3.1 Teamwork 3.2 Communications

- CDIO syllabus –
 WHAT
- CDIO standards HOW
- CDIO curriculum design process – from WHAT to HOW
- CDIO standards self-evaluation – HOW WELL

1 2 3 4 5 6 7 8 9 10 11 12

2006

2007

2008

1. The Context

Adoption of the principle that product. Process, and system lifecycie development and deployment are the context for engineering education 2. Learning Outcomes Specific, detailed learning outcomes for personal,

interpersonal, and product, process and system building skills, consistent with program goals and validated by program stakeholders 3. Integrated Curriculum

A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal, and product, process, and system building skills

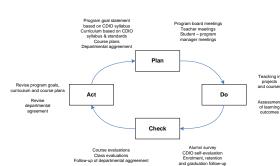
4. Introduction to Engineering

An introductory course that provides the framework for engineering practice in product. Process, and system building, and introduces essential personal and interpersonal skills 5. Design-Implement Experiences

A curriculum that includes two or more design-implement experiences, including one at a basic level and one at an advanced level

6. Engineering Workspaces Workspaces and laboratories that support and encourage hands-on learning of product, process, and system building disciplinary knowledge, and social learning

Integrated learning experiences that lead to the acquisition of disciplinary knowledge, as well as personal, interpersonal and produc, process,t and system building skills 8. Active Learning


7. Integrated Learning Experiences

Teaching and learning based on active experiential learning methods

 Enhancement of Faculty Skills Competence Actions that enhance faculty competence in personal, interpersonal, and product and system building skills ID. Enhancement of Faculty Tacabing Competence Actions that enhance faculty competence in providing integrated learning experiences, in using active experiential learning methods, and in assessing student learning 11. Learning Assessment

Assessment of student learning in personal, interpersonal, and product, process, and system building skills, as well as in disciplinary knowledge 12. Program Evaluation

A system that evaluates programs against these 12 standards, and provides feedback to students, faculty, and other stakeholders for the purposes of continuous improvement

THE CDIO CURRICULUM DESIGN PROCESS

Student

achievements

Disciplinary Knowledge & Reasoning:

Personal and Professional Skills

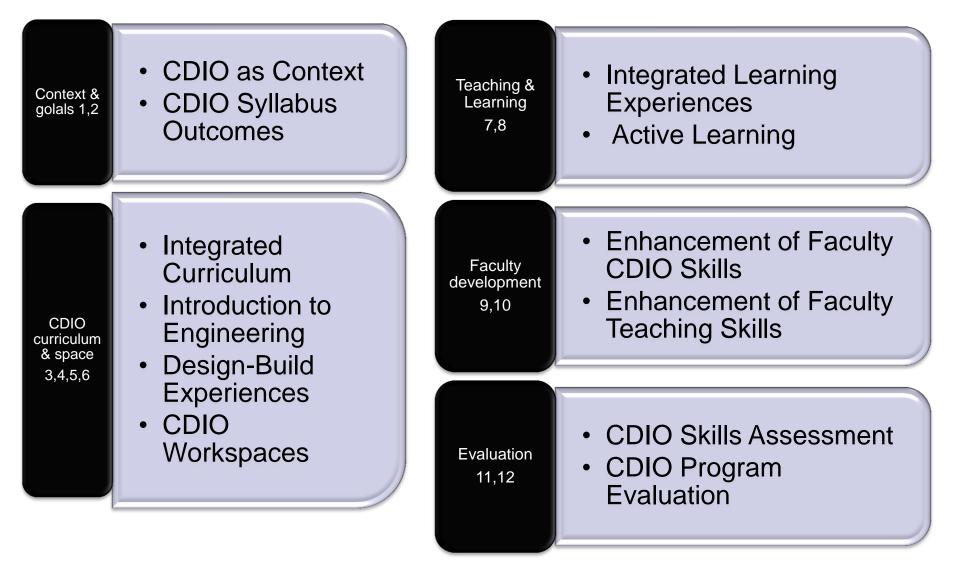
3.3 Communication in a foreign language

4.1 External, societal and environmental context

4.3 Conceiving, systems engineering and management

CD10 of Complex Systems

4.2 Enterprise and business context


Analytical reasoning and problem solving

1.1 Knowledge of underlying mathematics and sciences 1.2 Core engineering fundamental knowledge 1.3 Advanced engineering fundamental knowledge, methods

2.2 Experimentation, investigation and knowledge discovery

THE 12 CDIO STANDARDS – THE GUIDELINES FOR CDIO DEVELOPMENT

CASE:

MECHANICAL ENGINEERING AT CHALMERS UNIVERSITY OF TECHNOLOGY, SWEDEN

PLANNING THE CHANGE AT CHALMERS cdio

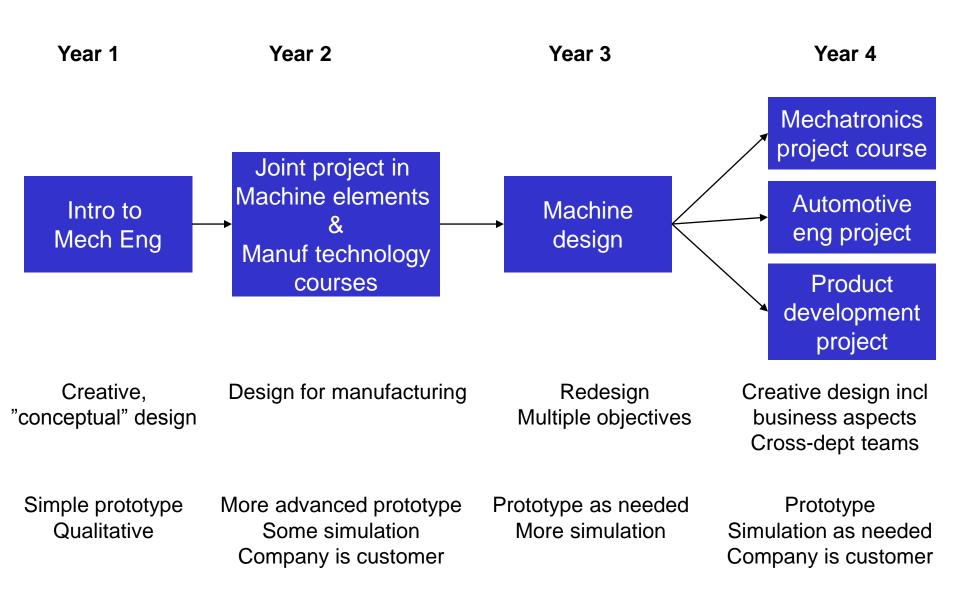
Identify needs & opportunities for change	Strengths+ More• Project-based courses• Design courses		
	 Weaknesses No design-build-test projects, lack of authenticity Employer requested better communication skills, project leadership & initiative + More Poor links between maths and engineering subjects 		
Establish vision & strategy	CDIO was selected as basis for a program vision & strategy		
Identify early successes	4 th year design-build-test competition-based projects were focused (Formula Student, Autonomous vehicles)		
Set up system for measuring the change	Self-assessment vs CDIO standards		

Design-implement experiences are instructional events in which learning occurs through the creation of a product, process, or system

- Train authentic engineering and decision-making
- Provide the natural context in which to teach many CDIO syllabus skills (teamwork, communications, ethics)

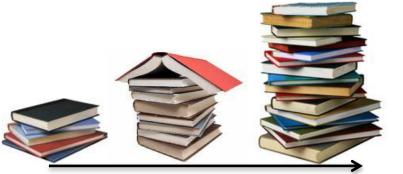
DESIGN-BUILD-TEST PROJECT EXAMPLE cdio

Chalmers Eco-Marathon Vera



A PLANNED LEARNING SEQUENCE FOR DESIGN SKILLS

THE PROTOTYPING LABORATORY



- 450 m2 facility where students can build prototypes
- Metal machining, woodworking, rapid prototyping, waterjet welding, electronics, composites ...
- Used in courses and projects from year 1 to master thesis projects

Integrated learning experiences develop **both** technical knowledge and "generic" skills (communication, teamwork, ethics, sustainability, etc)

Acquisition of technical knowledge

Development of generic skills

Source: Kristina Edström

Year 1

Intro Mathematics	Single-variable	Linear Algebra	Several-variable	
7.5 ECTS	Calculus 7.5 ECTS	7.5 ECTS	Calculus 7.5 ECTS	
Program ng in Matlab 4.5 ECTS	CAD M hp	Mechanic and Solid Mechanics I	Mechai s and Solid Mechanics I I	
Intro to Mechanical Eng	7.5 ECTS	7.5 ECTS	7.5 ECTS	

- Common computation labs in mathematics, programming & engineering science
- Communications

Year 2

Mechanics and Solid Mechanics I II 7.5 ECTS	Machine Elements 7.5 ECTS	Integrated Design and M 7.5 ECTS	anufacturing Project
Materials 7.5 ECTS	Materials and Manufacturing Technology	Sustainable product development 4.5 E	Industri Production
•	7.5 ECTS	7.5 ECTS	4 ECTS

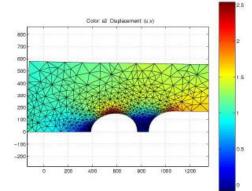
Year 3

Mechatronics 7.5 ECTS	Control Engineering 7.5 ECTS	Bachelor Thesis Project 15 ECTS		
7.5 EC15	7.5 EC15			
Fluid Mechanics7.5 ECTS	Elective I 7.5 ECTS	Elective II 7.5 ECTS	Mathematical Statistics 7.5 ECTS	

- Teamwork
- Sustainability
- Ethics

REFORMED MATHEMATICS EMPHASIZING SIMULATIONS

- Motivate importance of mathematics and applied mechanics courses
- Realistic engineering problems


Year 1 lab example

Analys av plan elastiska skiva med fyra hål

Beräkna spänningskoncentrationsfaktorn. Avgör om spänningshöjningarna vid hålen samverkar. Symmetrier skall utnyttjas.

- Working method based on modelling, simulation & analysis
- MATLAB programming
- Visualization of mechanical behaviour

A CULTURE OF CHANGE

Pre CDIO	CDIO planning	CDIO basic design & piloting	CDIO implementation	CDIO +
-2000	2000-2001	2001-2004	2004-2008	2009-2013
 M2000 reform Project courses More design Early eng experiences Master-like profiles No design- build-test 	 Set project goals Concretize CDIO concept Bench- marking Design-build- test pilots 	 Prototyping lab Multiple design-build- test projects Integrated learning 3+2 education structure adapted 	 Mathematics Sustainability Bachelor project English on master level HSV Excellence center 	 Virtual learning environment for math stat Integrated sustainability Material science courses with product focus
				 Set new goals

• Visiting committee

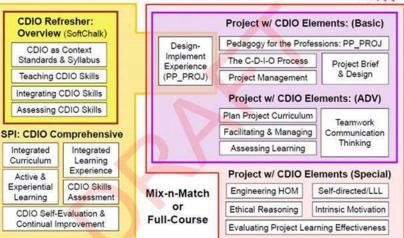
CURRENT FOCUS

- Entrepreneurship for the few and for the many
- New technologies & materials
- Preparing for global collaboration and competition
- Ethics

. . .

- Blended learning
- Challenge-based learning experiences
- Composites fabrication

CURRENT CDIO DEVELOPMENTS



Library for on-line learning of design methods developed for use across multiple design courses (Chalmers)

Under development

Conceive	PEST analysis	SWOT analysis	Customer needs elicitation	Requirements specification	Benchmarking	Questionnaire design	Market identification and selection	
Design	Function structure	Morpho- logical matrix	Pugh matrix	Kesselring matrix	Matlab optimization	STL model validation	FMEA	
Implement	Design of experi- ments	Prototyping lab machine tutorials (multiple)			VISED VERSIO	N: Offering of Buil	ding Blocks	NEW
Operate					CDIO Refresher: Overview (SoftChalk) CDIO as Context Standards & Syllabus	Design-	edagogy for the Professions	

On-line learning of CDIO for faculty as well as student (Singapore Polytechnic)

A <u>challenge-based learning experience</u> is a learning experience where the learning takes places through the

identification, analysis and design of a solution to a sociotechnical problem.

A <u>challenge-based learning experience</u> is typically

multidisciplinary,

takes place in an international context and, aims to find a collaboratively developed solution, which is environmentally, socially and economically sustainable.

EXAMPLE: CHALMERS C-LABS

- Sustainability-related challenges
- Master-level course + thesis open to students from all of Chalmers programs
- Regional problem scope and involvement
- Lab outside of Chalmers

 neutral ground

THE COURSE DESIGN

Problem formulation phase

Conception – Design – Implementation Set of mutually supporting projects

Theme: Urban transportation in Gothenburg region

...

. . .

Biodiesel fuels in Sweden

Redefinition of transport sharing system

Conceive, design & implementation phase

Jan-Feb

Mar-June

TO SUMMARIZE:

CDIO aims to educate students who are able to:

- Master a deeper working knowledge of the technical fundamentals
- Lead in the creation and operation of new products, processes, and systems
- Understand the importance and strategic impact of research and technological development on society
- To learn more, visit <u>www.cdio.org</u> or read Rethinking Engineering Education: The CDIO Approach, 2nd ed by Crawley, Malmqvist, Östlund, Brodeur & Edström, 2014

Edward F. Crawley · Johan Malmqvist Sören Östlund · Doris R. Brodeur Kristina Edström

Rethinking Engineering Education

The CDIO Approach Second Edition

Thank you for listening!

Any questions or comments?